Nonlinear Sciences > Chaotic Dynamics
[Submitted on 20 Sep 2012]
Title:Symmetry breaking in a model of antigenic variation with immune delay
View PDFAbstract:Effects of immune delay on symmetric dynamics are investigated within a model of antigenic variation in malaria. Using isotypic decomposition of the phase space, stability problem is reduced to the analysis of a cubic transcendental equation for the eigenvalues. This allows one to identify periodic solutions with different symmetries arising at a Hopf bifurcation. In the case of small immune delay, the boundary of the Hopf bifurcation is found in a closed form in terms of system parameters. For arbitrary values of the time delay, general expressions for the critical time delay are found, which indicate bifurcation to an odd or even periodic solution. Numerical simulations of the full system are performed to illustrate different types of dynamical behaviour. The results of this analysis are quite generic and can be used to study within-host dynamics of many infectious diseases.
Current browse context:
nlin.CD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.