High Energy Physics - Phenomenology
[Submitted on 31 Dec 2012]
Title:On the likely dominance of WIMP annihilation to fermion pair+W/Z (and implication for indirect detection)
View PDFAbstract:Arguably, the most popular candidate for Dark Matter (DM) is a massive, stable, Majorana fermion. However, annihilation of Majorana DM to two fermions often features a helicity-suppressed s-wave rate. Radiating a gauge boson via electroweak (EW) and electromagnetic (EM) bremsstrahlung removes this s-wave suppression. The main purpose of this talk is to explain in some detail why the branching ratio to a fermion pair is likely suppressed while the decay to the pair plus a W/Z is not. In doing so, we investigate the general conditions for s-wave suppression and un-suppression using Fierz transformations and partial wave expansions. Suppression for the 2-to-2 process is sufficiently severe that the EW and EM bremsstrahlung are likely to be the dominant modes of gauge-singlet Majorana DM annihilation. We end this talk with a discussion of the challenge presented by space-based data for Majorana DM models, given that the enhanced rate to radiated W and Z gauge bosons and their dominant decay via hadronic channels tends to produce more anti-protons than are observed.
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.