High Energy Physics - Phenomenology
[Submitted on 3 Jan 2013 (v1), last revised 13 Aug 2014 (this version, v3)]
Title:Discrete symmetries, roots of unity, and lepton mixing
View PDFAbstract:We investigate the possibility that the first column of the lepton mixing matrix U is given by u_1 = (2,-1,-1)^T/sqrt{6}. In a purely group-theoretical approach, based on residual symmetries in the charged-lepton and neutrino sectors and on a theorem on vanishing sums of roots of unity, we discuss the finite groups which can enforce this. Assuming that there is only one residual symmetry in the Majorana neutrino mass matrix, we find the almost unique solution Z_q x S_4 where the cyclic factor Z_q with q = 1,2,3,... is irrelevant for obtaining u_1 in U. Our discussion also provides a natural mechanism for achieving this goal. Finally, barring vacuum alignment, we realize this mechanism in a class of renormalizable models.
Submission history
From: Walter Grimus [view email][v1] Thu, 3 Jan 2013 16:33:21 UTC (15 KB)
[v2] Thu, 24 Jan 2013 17:00:39 UTC (16 KB)
[v3] Wed, 13 Aug 2014 13:10:56 UTC (16 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.