General Relativity and Quantum Cosmology
[Submitted on 20 Jan 2013 (v1), last revised 27 Jan 2013 (this version, v2)]
Title:Anisotropy in a Nonsingular Bounce
View PDFAbstract:Following recent claims relative to the question of large anisotropy production in regular bouncing scenarios, we study the evolution of such anisotropies in a model where an Ekpyrotic phase of contraction is followed by domination of a Galileon-type Lagrangian which generates a non-singular bounce. We show that the anisotropies decrease during the phase of Ekpyrotic contraction (as expected) and that they can be constrained to remain small during the non-singular bounce phase (a non-trivial result). Specifically, we derive the e-folding number of the phase of Ekpyrotic contraction which leads to a present-day anisotropy in agreement with current observational bounds.
Submission history
From: Patrick Peter [view email][v1] Sun, 20 Jan 2013 22:37:42 UTC (176 KB)
[v2] Sun, 27 Jan 2013 13:22:35 UTC (177 KB)
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.