High Energy Physics - Lattice
[Submitted on 21 Jan 2013 (v1), last revised 17 Jan 2014 (this version, v4)]
Title:Conformal Theories with an IR cutoff
View PDFAbstract:We give a new perspective on the dynamics of conformal theories realized in the SU(N) gauge theory, when the number of flavors N_f is within the conformal window. Motivated by the RG argument on conformal theories with a finite IR cutoff \Lambda_{IR}, we conjecture that the propagator of a meson G_H(t) on a lattice behaves at large t as a power-law corrected Yukawa-type decaying form G_H(t) = c_H \exp{(-m_H t)}/t^{\alpha_H} instead of the exponentially decaying form c_H\exp{(-m_H t)}, in the small quark mass region where m_H \le c \Lambda_{IR}: m_H is the mass of the ground state hadron in the channel H and c is a constant of order 1. The transition between the "conformal region" and the "confining region" is a first order transition. Our numerical results verify the predictions for the N_f=7 case and the N_f=16 case in the SU(3) gauge theory with the fundamental representation.
Submission history
From: Yoichi Iwasaki [view email][v1] Mon, 21 Jan 2013 08:19:19 UTC (798 KB)
[v2] Tue, 22 Jan 2013 09:33:45 UTC (798 KB)
[v3] Fri, 18 Oct 2013 09:08:38 UTC (798 KB)
[v4] Fri, 17 Jan 2014 09:18:57 UTC (798 KB)
Current browse context:
hep-lat
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.