Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 28 Jan 2013]
Title:Disentangling satellite galaxy populations using orbit tracking in simulations
View PDFAbstract:Physical processes regulating star formation in satellite galaxies represent an area of ongoing research, but the projected nature of observed coordinates makes separating different populations of satellites (with different processes at work) difficult. The orbital history of a satellite galaxy leads to its present-day phase space coordinates; we can also work backwards and use these coordinates to statistically infer information about the orbital history. We use merger trees from the MultiDark Run 1 N-body simulation to compile a catalog of the orbits of satellite haloes in cluster environments. We parameterize the orbital history by the time since crossing within 2.5 rvir of the cluster centre and use our catalog to estimate the probability density over a range of this parameter given a set of present-day projected (i.e. observable) phase space coordinates. We show that different populations of satellite haloes, e.g. infalling, backsplash and virialized, occupy distinct regions of phase space, and semi-distinct regions of projected phase space. This will allow us to probabilistically determine the time since infall of a large sample of observed satellite galaxies, and ultimately to study the effect of orbital history on star formation history (the topic of a future paper). We test the accuracy of our method and find that we can reliably recover this time within +/-2.58 Gyr in 68 per cent of cases by using all available phase space coordinate information, compared to +/-2.64 Gyr using only position coordinates and +/-3.10 Gyr guessing 'blindly', i.e. using no coordinate information, but with knowledge of the overall distribution of infall times. In some regions of phase space, the accuracy of the infall time estimate improves to +/-1.85 Gyr. Although we focus on time since infall, our method is easily generalizable to other orbital parameters (e.g. pericentric distance and time).
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.