Astrophysics > Solar and Stellar Astrophysics
[Submitted on 1 Mar 2013]
Title:Convective overshoot mixing in stellar interior models
View PDFAbstract:The convective overshoot mixing plays an important role in stellar structure and evolution. However, the overshoot mixing is a long standing problem. The uncertainty of the overshoot mixing is one of the most uncertain factors in stellar physics. As it is well known, the convective and overshoot mixing is determined by the radial chemical component flux. In this paper, a local model of the radial chemical component flux is established based on the hydrodynamic equations and some model assumptions. The model is tested in stellar models. The main conclusions are as follows. (i) The local model shows that the convective and overshoot mixing could be regarded as a diffusion process, and the diffusion coefficient for different chemical element is the same. However, if the non-local terms, i.e., the turbulent convective transport of radial chemical component flux, are taken into account, the diffusion coefficient for each chemical element should be in general different. (ii) The diffusion coefficient of convective / overshoot mixing shows different behaviors in convection zone and in overshoot region because the characteristic length scale of the mixing is large in the convection zone and small in the overshoot region. The overshoot mixing should be regarded as a weak mixing process. (iii) The result of the diffusion coefficient of mixing is tested in stellar models. It is found that a single choice of our central mixing parameter leads to consistent results for a solar convective envelope model as well as for core convection models of stars with mass from 2M to 10M.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.