Astrophysics > Solar and Stellar Astrophysics
[Submitted on 19 Mar 2013]
Title:Semiconvection: numerical simulations
View PDFAbstract:A grid of numerical simulations of double-diffusive convection is presented for the astrophysical case where viscosity (Prandtl number Pr) and solute diffusivity (Lewis number Le) are much smaller than the thermal diffusivity. As in laboratory and geophysical cases convection takes place in a layered form. The proper translation between subsonic flows in a stellar interior and an incompressible (Boussinesq) fluid is given, and the validity of the Boussinesq approximation for the semiconvection problem is checked by comparison with fully compressible simulations. The predictions of a simplified theory of mixing in semiconvection given in a companion paper are tested against the numerical results, and used to extrapolate these to astrophysical conditions. The predicted effective He-diffusion coefficient is nearly independent of the double-diffusive layering thickness $d$. For a fiducial main sequence model (15 $M_\odot$) the inferred mixing time scale is of the order $10^{10}$ yr. An estimate for the secular increase of $d$ during the semiconvective phase is given. It can potentially reach a significant fraction of a pressure scale height.
Submission history
From: Florian Zaussinger [view email][v1] Tue, 19 Mar 2013 09:26:00 UTC (870 KB)
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.