General Relativity and Quantum Cosmology
[Submitted on 22 Mar 2013 (v1), last revised 20 May 2013 (this version, v2)]
Title:A Gravitational Entropy Proposal
View PDFAbstract:We propose a thermodynamically motivated measure of gravitational entropy based on the Bel-Robinson tensor, which has a natural interpretation as the effective super-energy-momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein-Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson-Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein's field equations. It is also in keeping with Penrose's Weyl curvature hypothesis.
Submission history
From: Timothy Clifton [view email][v1] Fri, 22 Mar 2013 13:29:55 UTC (17 KB)
[v2] Mon, 20 May 2013 08:54:13 UTC (18 KB)
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.