Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 7 May 2013]
Title:X-ray, optical and infrared investigation of the candidate Supergiant Fast X-ray Transient IGR J18462-0223
View PDFAbstract:We report on a broad-band X-ray study (0.5-60 keV) of the poorly known candidate Supergiant Fast X-ray Transient (SFXT) IGR J18462-0223, and on optical and near-infrared (NIR) followup observations of field objects. The out-of-outburst X-ray state has been investigated for the first time with archival INTEGRAL/IBIS, ASCA, Chandra and Swift/XRT observations. This allowed us to place stringent 3 sigma upper limits on the soft (0.5-10 keV) and hard (18-60 keV) X-ray emission of 2.9x10^-13 erg cm^-2 s^-1 and 8x10^-12 erg cm^-2 s^-1, respectively; the source was also detected during an intermediate soft X-ray state with flux equal to 1.6x10^-11 erg cm^-2 s^-1 (0.5-10 keV). In addition, we report on the INTEGRAL/IBIS discovery of three fast hard X-ray flares (18-60 keV) having a duration in the range 1-12 hours: the flaring behavior was also investigated in soft X-rays (3-10 keV) with archival INTEGRAL/JEM-X observations. The duty cycle (1.2%) and the dynamic ranges (> 1,380 and > 190 in the energy bands 0.5-10 keV and 18-60 keV, respectively) were measured for the first time. Archival UKIDSS JHK NIR data, together with our deep R-band imaging of the field, unveiled a single, very red object inside the intersection of the Swift/XRT and XMM-Newton error circles: this source has optical/NIR photometric properties compatible with a very heavily absorbed blue supergiant located at about 11 kpc, thus being a strong candidate counterpart for IGR J18462-0223. NIR spectroscopy is advised to confirm the association. Finally, a hint of a possible orbital period was found at about 2.13 days. If confirmed by further studies, this would make IGR J18462-0223 the SFXT with the shortest orbital period among the currently known systems.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.