Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 14 May 2013]
Title:Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em
View PDFAbstract:We present densely-sampled UBVRI/griz photometric and low-resolution (6-10A) optical spectroscopic observations from 4 to 270 days after explosion of a newly discovered type II SN 2012aw in a nearby (~9.9 Mpc) galaxy M95. The light-curve characteristics of apparent magnitudes, colors, bolometric luminosity and the presence and evolution of prominent spectral features are found to have striking similarity with the archetypal IIP SNe 1999em, 1999gi and 2004et. The early time observations of SN 2012aw clearly detect minima in the light-curve of V, R and I bands near 37 days after explosion and this we suggest to be an observational evidence for emergence of recombination phase. The mid-plateau MV magnitude (-16.67 $\pm$ 0.04) lies in between the bright (~ -18) and subluminous (~ -15) IIP SNe. The mass of nickel is 0.06$\pm$0.01 M_sun. The SYNOW modelling of spectra indicate that the value and evolution of photospheric velocity is similar to SN 2004et, but about ~600 km/s higher than that of SNe 1999em and 1999gi at comparable epochs. This trend is more apparent in the line velocities of H alpha and H beta. A comparison of ejecta velocity properties with that of existing radiation-hydrodynamical simulations indicate that the energy of explosion lies in the range 1-2x10^51 ergs; a further comparison of nebular phase [Oi] doublet luminosity with SNe 2004et and 1987A indicate that the mass of progenitor star is about 14-15 M_sun. The presence of high-velocity absorption features in the mid-to-late plateau and possibly in early phase spectra show signs of interaction between ejecta and the circumstellar matter; being consistent with its early-time detection at X-ray and radio wavebands.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.