Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 12 Jun 2013 (v1), last revised 24 Jun 2013 (this version, v2)]
Title:Simulations of supermassive black hole growth in high-redshift disk galaxies
View PDFAbstract:Observations suggest that a large fraction of black hole growth occurs in normal star-forming disk galaxies. Here we describe simulations of black hole accretion in isolated disk galaxies with sufficient resolution (~5 pc) to track the formation of giant molecular clouds that feed the black hole. Black holes in z=2 gas-rich disks (fgas=50%) occasionally undergo ~10 Myr episodes of Eddington-limited accretion driven by stochastic collisions with massive, dense clouds. We predict that these gas-rich disks host weak AGNs 1/4 of the time, and moderate/strong AGNs 10% of the time. Averaged over 100 Myr timescales and the full distribution of accretion rates, the black holes grow at a few per cent of the Eddington limit -- sufficient to match observations and keep the galaxies on the MBH-Mbulge relation. This suggests that dense cloud accretion in isolated z=2 disks could dominate cosmic black hole growth. In z=0 disks with fgas=10%, Eddington-limited growth is extremely rare because typical gas clouds are smaller and more susceptible to disruption by AGN feedback. This results in an average black hole growth rate in high-fgas galaxies that is up to 1000 times higher than that in low-fgas galaxies. In all our simulations, accretion shows variability by factors of 10^4 on a variety of time scales, with variability at 1 Myr scales driven by the structure of the interstellar medium.
Submission history
From: Jared Gabor [view email][v1] Wed, 12 Jun 2013 20:00:13 UTC (2,192 KB)
[v2] Mon, 24 Jun 2013 15:31:17 UTC (2,192 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.