Astrophysics > Astrophysics of Galaxies
[Submitted on 19 Jun 2013 (v1), last revised 9 Aug 2013 (this version, v2)]
Title:Modeling the Pollution of Pristine Gas in the Early Universe
View PDFAbstract:We conduct a comprehensive theoretical and numerical investigation of the pollution of pristine gas in turbulent flows, designed to provide new tools for modeling the evolution of the first generation of stars. The properties of such Population III (Pop III) stars are thought to be very different than later generations, because cooling is dramatically different in gas with a metallicity below a critical value Z_c, which lies between ~10^-6 and 10^-3 solar value. Z_c is much smaller than the typical average metallicity, <Z>, and thus the mixing efficiency of the pristine gas in the interstellar medium plays a crucial role in the transition from Pop III to normal star formation. The small critical value, Z_c, corresponds to the far left tail of the probability distribution function (PDF) of the metallicity. Based on closure models for the PDF formulation of turbulent mixing, we derive equations for the fraction of gas, P, lying below Z_c, in compressible turbulence. Our simulation data shows that the evolution of the fraction P can be well approximated by a generalized self-convolution model, which predicts dP/dt = -n/tau_con P (1-P^(1/n)), where n is a measure of the locality of the PDF convolution and the timescale tau_con is determined by the rate at which turbulence stretches the pollutants. Using a suite of simulations with Mach numbers ranging from M = 0.9 to 6.2, we provide accurate fits to n and tau_con as a function of M, Z_c/<Z>, and the scale, L_p, at which pollutants are added to the flow. For P>0.9, mixing occurs only in the regions surrounding the pollutants, such that n=1. For smaller P, n is larger as mixing becomes more global. We show how the results can be used to construct one-zone models for the evolution of Pop III stars in a single high-redshift galaxy, as well as subgrid models for tracking the evolution of the first stars in large cosmological simulations.
Submission history
From: Liubin Pan [view email][v1] Wed, 19 Jun 2013 19:48:22 UTC (1,488 KB)
[v2] Fri, 9 Aug 2013 18:34:57 UTC (1,488 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.