Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 20 Jun 2013 (v1), last revised 18 Sep 2013 (this version, v2)]
Title:Comparative analysis of model-independent methods for exploring the nature of dark energy
View PDFAbstract:We make a comparative analysis of the various independent methods proposed in the literature for studying the nature of dark energy, using four different mocks of SnIa data. In particular, we explore a generic principal components analysis approach, the genetic algorithms, a series of approximations like Padé power law approximants, and various expansions in orthogonal polynomials, as well as cosmography, and compare them with the usual fit to a model with a constant dark energy equation of state w. We find that, depending on the mock data, some methods are more efficient than others at distinguishing the underlying model, although there is no universally better method.
Submission history
From: Savvas Nesseris [view email][v1] Thu, 20 Jun 2013 14:21:00 UTC (1,508 KB)
[v2] Wed, 18 Sep 2013 08:27:23 UTC (1,505 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.