Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 24 Jun 2013 (v1), last revised 1 Jul 2014 (this version, v4)]
Title:Quantization of Perturbations in an Inflating Elastic Solid
View PDFAbstract:A sufficiently rigid relativistic elastic solid can be stable for negative pressure values and thus is capable of driving a stage of accelerated expansion. If a relativistic elastic solid drove an inflationary stage in the early Universe, quantum mechanically excited perturbations would arise in the medium. We quantize the linear scalar and tensor perturbations and investigate the observational consequences of having such an inflationary period. We find that slowly varying sound speeds of the perturbations and a slowing varying equation of state of the solid can produce a slightly red-tilted scalar power spectrum that agrees with current observational data. Even in the absence of nonadiabatic pressures, perturbations evolve on superhorizon scales, due to the shear stresses within the solid. As such, the spectra of perturbations are in general sensitive to the details of the end of inflation and we characterize this dependence. Interestingly, we uncover here accelerating solutions for elastic solids with (1 + P/\rho) significantly greater than 0 that nevertheless have nearly scale-invariant scalar and tensor spectra. Beyond theoretical interest, this may allow for the possibility of viable inflationary phenomenology relatively far from the de Sitter regime.
Submission history
From: Michael Sitwell [view email][v1] Mon, 24 Jun 2013 20:08:09 UTC (1,214 KB)
[v2] Wed, 28 Aug 2013 20:55:40 UTC (1,213 KB)
[v3] Fri, 2 May 2014 18:44:39 UTC (1,213 KB)
[v4] Tue, 1 Jul 2014 18:35:15 UTC (1,271 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.