Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 25 Jun 2013]
Title:The roles of star formation and AGN activity of IRS sources in the HerMES fields
View PDFAbstract:In this work we explore the impact of the presence of an active galactic nucleus (AGN) on the mid- and far-infrared (IR) properties of galaxies as well as the effects of simultaneous AGN and starburst activity in these same galaxies. To do this we apply a multi-component, multi-band spectral synthesis technique to a sample of 250 micron selected galaxies of the Herschel Multi-tiered Extragalactic Survey, with IRS spectra available for all galaxies. Our results confirm that the inclusion of the IRS spectra plays a crucial role in the spectral analysis of galaxies with an AGN component improving the selection of the best-fit hot dust model (torus). We find a correlation between the obscured star formation rate (SFR) derived from the IR luminosity of the starburst component, SFR_IR and SFR_PAH, derived from the luminosity of the PAH features, L_PAH, with SFR_FIR taking higher values than SFR_PAH. The correlation is different for AGN- and starburst-dominated objects. The ratio of L_PAH to that of the starburst component, L_PAH/L_SB, is almost constant for AGN-dominated objects but decreases with increasing L_SB for starburst-dominated objects. SFR_FIR increases with the accretion luminosity, L_acc, with the increase less prominent for the very brightest, unobscured AGN-dominated sources. We find no correlation between the masses of the hot and cold dust components. We interpret this as a non-constant fraction of gas driven by the gravitational effects to the AGN while the starburst is ongoing. We also find no evidence of the AGN affecting the temperature of the cold dust component, though this conclusion is mostly based on objects with a non-dominant AGN component. We conclude that our findings do not provide evidence that the presence of AGN affects the star formation process in the host galaxy, but rather that the two phenomena occur simultaneously over a wide range of luminosities.
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.