Astrophysics > Solar and Stellar Astrophysics
[Submitted on 3 Jul 2013 (v1), last revised 17 Mar 2014 (this version, v2)]
Title:Massive double compact object mergers: gravitational wave sources and r-process-element production sites
View PDFAbstract:With our galactic evolutionary code that contains a detailed intermediate mass and massive binary population model, we study the temporal evolution of the galactic population of double neutron star binaries, mixed systems with a neutron star and black hole component and double black hole binaries. We compute the merger rates of these relativistic binaries and we translate them into LIGO II detection rates. We demonstrate that accounting for the uncertainties in the relation 'initial mass-final mass' predicted by massive close binary evolution and due to the possible effect of large stellar wind mass loss during the luminous blue variable phase of a star with initial mass larger than 30-40 Mo and during the red supergiant phase of a star with initial mass smaller than 30-40 Mo when such a star is a binary component, the double black hole merger rate may be very small, contrary to predictions made by other groups. Hydrodynamic computations of r-process chemical yields ejected during the relativistic binary merger process have recently become available. With our galactic code that includes binaries it is then straightforward to calculate the temporal galactic evolution of the r-process elements ejected by these mergers. We conclude that except for the earliest evolutionary phase of the Galaxy (~the first 100 Myr) double compact star mergers may be the major production sites of r-process elements and it is probable that the mixed systems dominate this production over double neutron star binary mergers.
Submission history
From: Nicki Mennekens [view email][v1] Wed, 3 Jul 2013 10:22:13 UTC (970 KB)
[v2] Mon, 17 Mar 2014 10:46:05 UTC (1,906 KB)
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.