Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 23 Jul 2013 (v1), last revised 5 Mar 2014 (this version, v3)]
Title:The biasing of baryons on the cluster mass function and cosmological parameter estimation
View PDFAbstract:We study the effect of baryonic processes on the halo mass function in the galaxy cluster mass range using a catalogue of 153 high resolution cosmological hydrodynamical simulations performed with the AMR code ramses. We use the results of our simulations within a simple analytical model to gauge the effects of baryon physics on the halo mass function. Neglect of AGN feedback leads to a significant boost in the cluster mass function similar to that reported by other authors. However, including AGN feedback not only gives rise to systems that are similar to observed galaxy clusters, but they also reverse the global baryonic effects on the clusters. The resulting mass function is closer to the unmodified dark matter halo mass function but still contains a mass dependent bias at the 5-10% level. These effects bias measurements of the cosmological parameters, such as $\sigma_8$ and $\Omega_m$. For current cluster surveys baryonic effects are within the noise for current survey volumes, but forthcoming and planned large SZ, X-ray and multi-wavelength surveys will be biased at the percent level by these processes. The predictions for the halo mass function including baryonic effects need to be carefully studied with larger and improved simulations. However, simulations of full cosmological boxes with the resolution we achieve and including AGN feedback are still computationally challenging.
Submission history
From: Davide Martizzi [view email][v1] Tue, 23 Jul 2013 09:55:40 UTC (267 KB)
[v2] Mon, 21 Oct 2013 21:48:27 UTC (303 KB)
[v3] Wed, 5 Mar 2014 00:44:42 UTC (118 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.