Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 24 Jul 2013]
Title:UV-bright nearby early type galaxies observed in the mid-infrared: evidence for a multi-stage formation history by way of WISE and GALEX imaging
View PDFAbstract:In the local Universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission (UVX) over what is expected from their old, red stellar populations. Several origins for the UVX have been proposed, including a population of hot young stars, or a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of ultraviolet excess (UVX) in a selection of 49 nearby E/S0-type galaxies by measuring the extended photometry in the UV-midIR with GALEX, SDSS and WISE. We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis with EHB models (Conroy & Gunn 2010). We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to EHB fraction. There are strong color gradients with the outer radii bluer than the inner half-light radii by ~1 magnitude. This color difference is easily accounted for with a BHB fraction increase of 0.25 with radius. We estimated the average ages for the inner and outer radii are 7.0+/-0.3 Gyr, and 6.2+/-0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed ~1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the ~0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z~1
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.