Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 25 Jul 2013 (v1), last revised 12 Dec 2013 (this version, v2)]
Title:Lyman-alpha Heating of Inhomogeneous High-redshift Intergalactic Medium
View PDFAbstract:The intergalactic medium (IGM) prior to the epoch of reionization consists mostly of neutral hydrogen gas. Ly-alpha photons produced by early stars resonantly scatter off hydrogen atoms, causing energy exchange between the radiation field and the gas. This interaction results in moderate heating of the gas due to the recoil of the atoms upon scattering, which is of great interest for future studies of the pre-reionization IGM in the HI 21 cm line. We investigate the effect of this Ly-alpha heating in the IGM with linear density, temperature, and velocity perturbations. Perturbations smaller than the diffusion length of photons could be damped due to heat conduction by Ly-alpha photons. The scale at which damping occurs and the strength of this effect depend on various properties of the gas, the flux of Ly-alpha photons and the way in which photon frequencies are redistributed upon scattering. To find the relevant length scale and the extent to which Ly-alpha heating affects perturbations, we calculate the gas heating rates by numerically solving linearized Boltzmann equations in which scattering is treated by the Fokker-Planck approximation. We find that (1) perturbations add a small correction to the gas heating rate, and (2) the damping of temperature perturbations occurs at scales with comoving wavenumber k>10^4 Mpc^{-1}, which are much smaller than the Jeans scale and thus unlikely to substantially affect the observed 21 cm signal.
Submission history
From: Antonija Oklopcic [view email][v1] Thu, 25 Jul 2013 20:00:02 UTC (77 KB)
[v2] Thu, 12 Dec 2013 19:22:44 UTC (77 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.