Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 26 Jul 2013 (v1), last revised 26 Apr 2014 (this version, v2)]
Title:Relativistic Jet Properties of GeV-TeV Blazars and Possible Implications for the Jet Formation, Composition, and Cavity Kinematics
View PDFAbstract:We fit the spectral energy distributions (SEDs) of a GeV-TeV FSRQ sample with the leptonic model. Their gamma_min of the relativistic electron distributions, which significantly affect the estimates of the jet properties, are constrained, with a typical value of 48. Their jet power, magnetized parameter, radiation efficiency, and jet production/radiation rates per central black hole (BH) mass are derived and compared to that of BL Lacs. We show that he FSRQ jets may be dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac jets are likely dominated by particles and have a lower radiation efficiency than FSRQs. Being different from BL Lacs, the jet powers of FSRQs are proportional to their central BH masses. The jet production and radiation rates of the FSRQs distribute in narrow ranges and are correlated with each other, whereas no similar feature is found for the BL Lacs. We also show that the jet power is correlated with the cavity kinetic power, and the magnetic field energy in the jets may provide the cavity kinetic energy of FSRQs and the kinetic energy of cold protons in the jets may be crucial for cavity kinetic energy of BL Lacs. We suggest that the dominating formation mechanism of FSRQ jets may be the BZ process, but BL Lac jets may be produced via the BP and/or BZ processes, depending on the structures and accretion rates of accretion disks.
Submission history
From: Jin Zhang [view email][v1] Fri, 26 Jul 2013 02:25:19 UTC (462 KB)
[v2] Sat, 26 Apr 2014 13:58:54 UTC (484 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.