Astrophysics > Earth and Planetary Astrophysics
[Submitted on 26 Jul 2013]
Title:Investigation of systematic effects in Kepler data: Seasonal variations in the light curve of HAT-P-7b
View PDFAbstract:With years of Kepler data currently available, it can now be attempted to measure variations in planetary transit depths over time. To do so, it is of primary importance to understand which systematic effects may affect the measurement of transits. We aim to measure the stability of Kepler measurements over years of observations. We present a study of the depth of about 500 transit events of the Hot Jupiter HAT-P-7b, using 14 quarters (Q0-Q13) of data from the Kepler Satellite. We find a systematic variation in the depth of the primary transit, related to quarters of data and recurring yearly. These seasonal variations are about 1%. Within seasons, we find no evidence for trends. We speculate that the cause of the seasonal variations could be unknown field crowding or instrumental artifacts. Our results show that care must be taken when combining transits throughout different quarters of Kepler data. Measuring the relative planetary radius of HAT-P-7b without taking these systematic effects into account leads to unrealistically low error estimates. This effect could be present in all Kepler targets. If so, relative radius measurements of all Hot Jupiters to a precision much better than 1% are unrealistic.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.