Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 26 Jul 2013]
Title:Testing models of new physics with UHE air shower observations
View PDFAbstract:Several air shower observatories have established that the number of muons produced in UHE air showers is significantly larger than that predicted by models. We argue that the only solution to this muon deficit, compatible with the observed Xmax distributions, is to reduce the transfer of energy from the hadronic shower into the EM shower, by reducing the production or decay of pi0s. We present four different models of new physics, each with a theoretical rationale, which can accomplish this. One has a pure proton composition and three have mixed composition. Two entail new particle physics and suppress pi0 production or decay above LHC energies. The other two are less radical but nonetheless require significant modifications to existing hadron production models -- in one the changes are only above LHC energies and in the other the changes extend to much lower energies. We show that the models have distinctively different predictions for the correlation between the number of muons at ground and Xmax in hybrid events, so that with future hybrid data it should be possible to discriminate between models of new physics and disentangle the particle physics from composition.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.