High Energy Physics - Theory
[Submitted on 17 Nov 2013]
Title:Technically Natural Vacuum Energy at the Tip of a Supersymmetric Teardrop
View PDFAbstract:A minimal supersymmetric brane-world model is presented which has: i) zero classical four-dimensional vacuum curvature, despite the large naive vacuum energy due to contributions from Standard Model particles; ii) one-(bulk)-loop quantum corrections to the vacuum energy with a size set by the radius of the extra-dimensional spheroid. These corrections are technically natural because a BPS-like relation between the brane tension and R-charge---which would have preserved (half of) the bulk supersymmetry---is violated by the requirement that the stabilizing R-symmetry gauge flux be quantized. The extra-dimensional geometry is similar to previous rugby-ball geometries, but is simpler in that there is only one brane and so fewer free parameters. Although the sign of the renormalized vacuum energy ends up being the unphysical one for this model (in the limit considered here, where the massive bulk loop is the leading contribution), it serves as an illustrative example of the relevant physics.
Submission history
From: Matthew Williams Ph.D. [view email][v1] Sun, 17 Nov 2013 15:52:22 UTC (16 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.