General Relativity and Quantum Cosmology
[Submitted on 14 Nov 2013 (v1), last revised 2 Dec 2013 (this version, v2)]
Title:Thermalized Vacuum and Vacuum Effects
View PDFAbstract:Some of the well-known effects regarding the vacuum are revisited under the formalism of the imaginary-time field theory. From these effects, they could imply the existence of one thermal vacuum in different circumstances. The imaginary-time hamiltonian of the vacuum is found to provide not only exact distribution functions in the calculations of the Casimir effect and the Van der Waals force but also cutoff functions. The thermal bath for the Unruh effect is constructed from the imaginary-time Green function. From the field theory in the curved space-time, field quantizations are defined according to different vacuum states and lead to the Hawking radiation; the introduced conformal invariance agree with the formalism of the imaginary-time field theory. The induced Green functions in the curved space-time are in accordance with those from the picture given from the thermal vacuum.
Submission history
From: Yi-Cheng Huang [view email][v1] Thu, 14 Nov 2013 18:18:30 UTC (19 KB)
[v2] Mon, 2 Dec 2013 02:49:37 UTC (19 KB)
Current browse context:
gr-qc
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.