High Energy Physics - Theory
[Submitted on 21 Nov 2013]
Title:Holographic description of quantum black hole on a computer
View PDFAbstract:The discovery of the fact that black holes radiate particles and eventually evaporate led Hawking to pose the well-known information loss paradox. This paradox caused a long and serious debate since it claims that the fundamental laws of quantum mechanics may be violated. A possible cure appeared recently from superstring theory, a consistent theory of quantum gravity: if the holographic description of a quantum black hole based on the gauge/gravity duality is correct, the information is not lost and quantum mechanics remains valid. Here we test this gauge/gravity duality on a computer at the level of quantum gravity for the first time. The black hole mass obtained by Monte Carlo simulation of the dual gauge theory reproduces precisely the quantum gravity effects in an evaporating black hole. This result opens up totally new perspectives towards quantum gravity since one can simulate quantum black holes through dual gauge theories.
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.