Nuclear Experiment
[Submitted on 25 Nov 2013 (v1), last revised 11 Jul 2014 (this version, v3)]
Title:An alternative explanation of the dibaryon suggested by experiments at the WASA facility at the FZ Julich Cooler synchrotron
View PDFAbstract:A series of publications of the WASA collaboration culminates in a recent paper of Pricking, Bashkanov and Clement [1] claiming a dibaryon resonance at 2370 MeV. However, as explained here, there are logical flaws in this result. A natural alternative arises from the reaction pd -> N N*(1440)p_s where p_s is a spectator proton. There is supporting evidence from a recent experiment of Mielke et al. on dp -> 3He-piplus-piminus
Submission history
From: David Bugg [view email][v1] Mon, 25 Nov 2013 10:34:02 UTC (9 KB)
[v2] Sun, 23 Feb 2014 19:09:00 UTC (10 KB)
[v3] Fri, 11 Jul 2014 08:32:46 UTC (10 KB)
Current browse context:
nucl-ex
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.