General Relativity and Quantum Cosmology
[Submitted on 27 Nov 2013 (v1), last revised 18 Aug 2017 (this version, v4)]
Title:Constraints on Einstein-Æther theory and Horava gravity from binary pulsar observations
View PDFAbstract:Binary pulsars are ideal to test the foundations of General Relativity, such as Lorentz symmetry, which requires that experiments produce the same results in all free-falling (this http URL) frames. We here break this symmetry in the gravitational sector by specifying a preferred time direction, and thus a preferred frame, at each spacetime point. We then examine the consequences of this gravitational Lorentz symmetry breaking in the orbital evolution of binary pulsars, focusing on the dissipative effects. We find that Lorentz symmetry breaking modifies these effects, and thus the orbital dynamics, in two different ways. First, it generically causes the emission of dipolar radiation, which makes the orbital separation decrease faster than in General Relativity. Second, the quadrupole component of the emission is also modified. The orbital evolution depends critically on the sensitivities of the stars, which measure how their binding energies depend on the motion relative to the preferred frame. We calculate the sensitivities numerically and compute the predicted orbital decay rate of binary pulsars in Lorentz-violating gravity. By testing these predictions against observations, we place very stringent constraints on gravitational Lorentz violation.
Submission history
From: Kent Yagi [view email][v1] Wed, 27 Nov 2013 21:00:02 UTC (872 KB)
[v2] Fri, 28 Mar 2014 16:03:22 UTC (872 KB)
[v3] Mon, 8 Sep 2014 16:30:42 UTC (871 KB)
[v4] Fri, 18 Aug 2017 17:43:25 UTC (871 KB)
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.