High Energy Physics - Phenomenology
[Submitted on 19 Dec 2013 (v1), last revised 29 Sep 2014 (this version, v2)]
Title:WIMPs and Un-Naturalness
View PDFAbstract:The WIMP "miracle" suggests a new physics threshold ranging from the weak scale up to several tens of TeVs. Obtaining the correct dark matter density in many theories aiming to solve the hierarchy problem may thus require some amount of tuning of the weak scale, hinting at a possible connection between WIMP dark matter and unnaturalness. We point out that dark matter direct detection is a very efficient probe of these unnatural models, and that existing data already provide important clues to the nature of the associated WIMPs. We present a model-independent, relativistic analysis of the signatures of a gauge-singlet dark matter candidate of arbitrary spin, and discuss the current experimental bounds from LUX and XENON100. For complex WIMPs, dark matter direct detection is complementary to electroweak precision tests, and can even compete with flavor constraints if the dark matter has spin. Particularly relevant for future searches are couplings to the Higgs mass operator, which are expected to be large if the electroweak scale is finely tuned. Care is devoted to the RG evolution of the effective Lagrangian. We find that the CP-even scalar coupling to charm quarks is enhanced by about 20% compared to the one-loop estimate.
When pushed in the unnatural regime, warped extra dimensions -- with or without custodial symmetry -- become attractive theories for flavor, the Higgs mass, and dark matter. The WIMP argument basically sets an upper bound on unnaturalness, whereas direct detection experiments select scalar or real particles as the most compelling dark matter candidates.
Submission history
From: Luca Vecchi [view email][v1] Thu, 19 Dec 2013 18:53:30 UTC (1,057 KB)
[v2] Mon, 29 Sep 2014 13:01:08 UTC (1,059 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.