Astrophysics > Earth and Planetary Astrophysics
[Submitted on 20 Dec 2013]
Title:Coupling between corotation and Lindblad resonances in the elliptic planar three-body problem
View PDFAbstract:We investigate the dynamics of two satellites with masses $\mu_s$ and $\mu'_s$ orbiting a massive central planet in a common plane, near a first order mean motion resonance $m$+1:$m$ ($m$ integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degree of freedom system, associated with the two critical resonant angles $\phi= (m+1)\lambda' -m\lambda - \varpi$ and $\phi'= (m+1)\lambda' -m\lambda - \varpi'$, where $\lambda$ and $\varpi$ are the mean longitude and longitude of periapsis of $\mu_s$, respectively, and where the primed quantities apply to $\mu'_s$. We consider the special case where $\mu_s \rightarrow 0$ (restricted problem). The symmetry between the two angles $\phi$ and $\phi'$ is then broken, leading to two different kinds of resonances, classically referred to as Corotation Eccentric resonance (CER) and Lindblad Eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance $D$ between the CER and LER, and a forcing parameter $\epsilon_L$ that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for $D=0$ the system is integrable, for $D$ of order unity, it exhibits prominent chaotic regions, while for $D$ large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances : Aegaeon, Methone and Anthe.
Submission history
From: Maryame El Moutamid [view email][v1] Fri, 20 Dec 2013 14:34:22 UTC (5,509 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.