High Energy Physics - Phenomenology
[Submitted on 27 Feb 2015 (v1), last revised 18 Jun 2015 (this version, v2)]
Title:Deconfinement Transition at High Isospin Chemical Potential and Low Temperature
View PDFAbstract:We consider QCD with two degenerate flavors of light quarks(up and down) at asymptotically high isospin chemical potential with zero baryon chemical potential and calculate for the first time a quantitative expression for the critical temperature of the deconfinement transition in this regime. At high isospin chemical potential and sufficiently low temperatures this theory becomes equivalent to a pure Yang-Mills theory and accordingly has a first order deconfinement phase transition. Although this was conjectured in a seminal paper by Son and Stephanov in the year 2001, the critical temperature of this deconfinement phase transition was not computed. This paper computes the energy scale associated with this transition as a function of the isospin chemical potential by relating the parameters of the equivalent Yang-Mills theory to those of the underlying theory. We also relate the equation of state in one strongly interacting regime of QCD namely at finite isospin density to that in pure Yang-Mills, with the latter being amenable to straightforward numerical calculation. Our results for the critical temperature of deconfinement transition can be compared with future lattice calculations.
Submission history
From: Srimoyee Sen [view email][v1] Fri, 27 Feb 2015 21:00:10 UTC (182 KB)
[v2] Thu, 18 Jun 2015 19:30:50 UTC (181 KB)
Current browse context:
hep-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.