Mathematics > Numerical Analysis
[Submitted on 3 Mar 2015 (v1), last revised 3 Apr 2016 (this version, v2)]
Title:Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case
View PDFAbstract:In this article, we study bivariate polynomial interpolation on the node points of degenerate Lissajous figures. These node points form Chebyshev lattices of rank $1$ and are generalizations of the well-known Padua points. We show that these node points allow unique interpolation in appropriately defined spaces of polynomials and give explicit formulas for the Lagrange basis polynomials. Further, we prove mean and uniform convergence of the interpolating schemes. For the uniform convergence the growth of the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature.
Submission history
From: Wolfgang Erb [view email][v1] Tue, 3 Mar 2015 11:00:13 UTC (1,012 KB)
[v2] Sun, 3 Apr 2016 16:54:11 UTC (1,041 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.