High Energy Physics - Phenomenology
[Submitted on 3 Mar 2015 (v1), last revised 6 Jul 2015 (this version, v3)]
Title:Minimal Asymmetric Dark Matter
View PDFAbstract:In the early Universe, any particle carrying a conserved quantum number and in chemical equilibrium with the thermal bath will unavoidably inherit a particle-antiparticle asymmetry. A new particle of this type, if stable, would represent a candidate for asymmetric dark matter (DM) with an asymmetry directly related to the baryon asymmetry. We study this possibility for a minimal DM sector constituted by just one (generic) $SU(2)_L$ multiplet $\chi$ carrying hypercharge, assuming that at temperatures above the electroweak phase transition an effective operator enforces chemical equilibrium between $\chi$ and the Higgs boson. We argue that limits from DM direct detection searches severely constrain this scenario, leaving as the only possibilities scalar or fermion multiplets with hypercharge $y = 1$, preferentially quintuplets or larger $SU(2)$ representations, and with a mass in the few TeV range.
Submission history
From: Martin Bernhard Krauss [view email][v1] Tue, 3 Mar 2015 21:00:16 UTC (72 KB)
[v2] Mon, 23 Mar 2015 19:19:41 UTC (64 KB)
[v3] Mon, 6 Jul 2015 11:29:13 UTC (66 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.