High Energy Physics - Phenomenology
[Submitted on 4 Mar 2015 (v1), last revised 31 Mar 2015 (this version, v2)]
Title:Froissart Bound on Inelastic Cross Section Without Unknown Constants
View PDFAbstract:Assuming that axiomatic local field theory results hold for hadron scattering, André Martin and S. M. Roy recently obtained absolute bounds on the D-wave below threshold for pion-pion scattering and thereby determined the scale of the logarithm in the Froissart bound on total cross sections in terms of pion mass only. Previously, Martin proved a rigorous upper bound on the inelastic cross-section $\sigma_{inel}$ which is one-fourth of the corresponding upper bound on $\sigma_{tot}$, and Wu, Martin,Roy and Singh improved the bound by adding the constraint of a given $\sigma_{tot}$. Here we use unitarity and analyticity to determine, without any high energy approximation, upper bounds on energy averaged inelastic cross sections in terms of low energy data in the crossed channel. These are Froissart-type bounds without any unknown coefficient or unknown scale factors and can be tested experimentally. Alternatively, their asymptotic forms,together with the Martin-Roy absolute bounds on pion-pion D-waves below threshold, yield absolute bounds on energy-averaged inelastic cross sections. E.g. for $\pi^0 \pi^0$ scattering, defining $\sigma_{inel}=\sigma_{tot} -\big (\sigma^{\pi^0 \pi^0 \rightarrow \pi^0 \pi^0} + \sigma^{\pi^0 \pi^0 \rightarrow \pi^+ \pi^-} \big )$,we show that for c.m. energy $\sqrt{s}\rightarrow \infty $, $\bar{\sigma}_{inel }(s,\infty)\equiv s\int_{s} ^{\infty } ds'\sigma_{inel }(s')/s'^2 \leq (\pi /4) (m_{\pi })^{-2} [\ln (s/s_1)+(1/2)\ln \ln (s/s_1) +1]^2$ where $1/s_1= 34\pi \sqrt{2\pi }\>m_{\pi }^{-2} $ . This bound is asymptotically one-fourth of the corresponding Martin-Roy bound on the total cross section, and the scale factor $s_1$ is one-fourth of the scale factor in the total cross section bound. The average over the interval (s,2s) of the inelastic $\pi^0 \pi^0 $cross section has a bound of the same form with $1/s_1$ replaced by $1/s_2=2/s_1 $.
Submission history
From: Andre Martin J [view email][v1] Wed, 4 Mar 2015 09:32:47 UTC (14 KB)
[v2] Tue, 31 Mar 2015 12:08:09 UTC (14 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.