Nuclear Theory
[Submitted on 11 Mar 2015 (v1), last revised 19 May 2015 (this version, v3)]
Title:Relativistic quantum transport coefficients for second-order viscous hydrodynamics
View PDFAbstract:We express the transport coefficients appearing in the second-order evolution equations for bulk viscous pressure and shear stress tensor using Bose-Einstein, Boltzmann, and Fermi-Dirac statistics for the equilibrium distribution function and Grad's 14-moment approximation as well as the method of Chapman-Enskog expansion for the non-equilibrium part. Specializing to the case of transversally homogeneous and boost-invariant longitudinal expansion of the viscous medium, we compare the results obtained using the above methods with those obtained from the exact solution of the massive 0+1d relativistic Boltzmann equation in the relaxation-time approximation. We show that compared to the 14-moment approximation, the hydrodynamic transport coefficients obtained by employing the Chapman-Enskog method leads to better agreement with the exact solution of the relativistic Boltzmann equation.
Submission history
From: Amaresh Jaiswal [view email][v1] Wed, 11 Mar 2015 09:08:33 UTC (1,029 KB)
[v2] Mon, 16 Mar 2015 16:33:43 UTC (1,029 KB)
[v3] Tue, 19 May 2015 19:15:53 UTC (1,030 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.