High Energy Physics - Phenomenology
[Submitted on 11 Mar 2015 (v1), last revised 28 Sep 2015 (this version, v2)]
Title:Improved TMD factorization for forward dijet production in dilute-dense hadronic collisions
View PDFAbstract:We study forward dijet production in dilute-dense hadronic collisions. By considering the appropriate limits, we show that both the transverse-momentum-dependent (TMD) and the high-energy factorization formulas can be derived from the Color Glass Condensate framework. Respectively, this happens when the transverse momentum imbalance of the dijet system, $k_t$, is of the order of either the saturation scale, or the hard jet momenta, the former being always much smaller than the latter. We propose a new formula for forward dijets that encompasses both situations and is therefore applicable regardless of the magnitude of $k_t$. That involves generalizing the TMD factorization formula for dijet production to the case where the incoming small-$x$ gluon is off-shell. The derivation is performed in two independent ways, using either Feynman diagram techniques, or color-ordered amplitudes.
Submission history
From: Piotr Kotko [view email][v1] Wed, 11 Mar 2015 17:03:56 UTC (585 KB)
[v2] Mon, 28 Sep 2015 19:53:02 UTC (598 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.