High Energy Physics - Theory
[Submitted on 12 Mar 2015 (v1), last revised 15 Apr 2015 (this version, v2)]
Title:Transplanckian axions !?
View PDFAbstract:We discuss quantum gravitational effects in Einstein theory coupled to periodic axion scalars to analyze the viability of several proposals to achieve superplanckian axion periods (aka decay constants) and their possible application to large field inflation models. The effects we study correspond to the nucleation of euclidean gravitational instantons charged under the axion, and our results are essentially compatible with (but independent of) the Weak Gravity Conjecture, as follows: Single axion theories with superplanckian periods contain gravitational instantons inducing sizable higher harmonics in the axion potential, which spoil superplanckian inflaton field range. A similar result holds for multi-axion models with lattice alignment (like the Kim-Nilles-Peloso model). Finally, theories with $N$ axions can still achieve a moderately superplanckian periodicity (by a $\sqrt{N}$ factor) with no higher harmonics in the axion potential. The Weak Gravity Conjecture fails to hold in this case due to the absence of some instantons, which are forbidden by a discrete $\mathbf{Z}_N$ gauge symmetry. Finally we discuss the realization of these instantons as euclidean D-branes in string compactifications.
Submission history
From: Miguel Montero [view email][v1] Thu, 12 Mar 2015 20:52:16 UTC (464 KB)
[v2] Wed, 15 Apr 2015 14:20:52 UTC (465 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.