Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 12 Mar 2015]
Title:The mass and radii of strongly magnetized neutron stars
View PDFAbstract:It has been clear for some time now that super-critical surface magnetic fields, exceeding 4 x 10^13 G, exist on a subset of neutron stars. These magnetars may harbor interior fields many orders of magnitude larger, potentially reaching equipartition values. However, the impact of these strong fields on stellar structure has been largely ignored, potentially complicating attempts to infer the high density nuclear equation of state. Here we assess the effect of these strong magnetic fields on the mass-radius relationship of neutron stars. We employ an effective field theory model for the nuclear equation of state that includes the impact of hyperons, anomalous magnetic moments, and the physics of the crust. We consider two magnetic field geometries, bounding the likely magnitude of the impact of magnetic fields: a statistically isotropic, tangled field and a force-free configuration. In both cases even equipartition fields have at most a 30% impact on the maximum mass. However, the direction of the effect of the magnetic field depends on the geometry employed - force-free fields leading to reductions in the maximum neutron star mass and radius while tangled fields increase both - challenging the common intuition in the literature on the impact of magnetic fields.
Current browse context:
astro-ph.HE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.