Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 23 Mar 2015 (v1), last revised 6 Jul 2016 (this version, v2)]
Title:On the sensitivity of CTA to gamma-ray boxes from multi-TeV dark matter
View PDFAbstract:Collider, direct and indirect searches for dark matter have typically little or no sensitivity to weakly interacting massive particles (WIMPs) with masses above a few TeV. This rather unexplored regime can however be probed through the search for distinctive gamma-ray spectral features produced by the annihilation of WIMPs at very high energies. Here we present a dedicated search for gamma-ray boxes -- sharp spectral features that cannot be mimicked by astrophysical sources -- with the upcoming Cherenkov Telescope Array (CTA). Using realistic projections for the instrument performance and detailed background modelling, a profile likelihood analysis is implemented to derive the expected upper limits and sensitivity reach after 100 h of observations towards a $2^\circ\times2^\circ$ region around the Galactic centre. Our results show that CTA will be able to probe gamma-ray boxes down to annihilation cross sections of $10^{-27}-10^{-26}\,\text{cm}^3\text{/s}$ up to tens of TeV. We also identify a number of concrete particle physics models providing thermal dark matter candidates that can be used as target benchmarks in future search campaigns. This constitutes a golden opportunity for CTA to either discover or rule out multi-TeV thermal dark matter in a corner of parameter space where all other experimental efforts are basically insensitive.
Submission history
From: Miguel Pato [view email][v1] Mon, 23 Mar 2015 20:00:28 UTC (938 KB)
[v2] Wed, 6 Jul 2016 14:26:19 UTC (1,289 KB)
Current browse context:
astro-ph.HE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.