High Energy Physics - Theory
[Submitted on 28 Mar 2015]
Title:Effective operators in SUSY, superfield constraints and searches for a UV completion
View PDFAbstract:We discuss the role of a class of higher dimensional operators in 4D N=1 supersymmetric effective theories. The Lagrangian in such theories is an expansion in momenta below the scale of "new physics" ($\Lambda$) and contains the effective operators generated by integrating out the "heavy states" above $\Lambda$ present in the UV complete theory. We go beyond the "traditional" leading order in this momentum expansion (in $\partial/\Lambda$). Keeping manifest supersymmetry and using superfield {\it constraints} we show that the corresponding higher dimensional (derivative) operators in the sectors of chiral, linear and vector superfields of a Lagrangian can be "unfolded" into second-order operators. The "unfolded" formulation has only polynomial interactions and additional massive superfields, some of which are ghost-like if the effective operators were {\it quadratic} in fields. Using this formulation, the UV theory emerges naturally and fixes the (otherwise unknown) coefficient and sign of the initial (higher derivative) operators. Integrating the massive fields of the "unfolded" formulation generates an effective theory with only polynomial effective interactions relevant for phenomenology. We also provide several examples of "unfolding" of theories with higher derivative {\it interactions} in the gauge or matter sectors that are actually ghost-free. We then illustrate how our method can be applied even when including {\it all orders} in the momentum expansion, by using an infinite set of superfield constraints and an iterative procedure, with similar results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.