Mathematics > Statistics Theory
[Submitted on 28 Mar 2015]
Title:Laplace Approximation in High-dimensional Bayesian Regression
View PDFAbstract:We consider Bayesian variable selection in sparse high-dimensional regression, where the number of covariates $p$ may be large relative to the samples size $n$, but at most a moderate number $q$ of covariates are active. Specifically, we treat generalized linear models. For a single fixed sparse model with well-behaved prior distribution, classical theory proves that the Laplace approximation to the marginal likelihood of the model is accurate for sufficiently large sample size $n$. We extend this theory by giving results on uniform accuracy of the Laplace approximation across all models in a high-dimensional scenario in which $p$ and $q$, and thus also the number of considered models, may increase with $n$. Moreover, we show how this connection between marginal likelihood and Laplace approximation can be used to obtain consistency results for Bayesian approaches to variable selection in high-dimensional regression.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.