Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 8 Jun 2015 (v1), last revised 9 Jul 2015 (this version, v2)]
Title:Measurement of radioactive contamination in the high-resistivity silicon CCDs of the DAMIC experiment
View PDFAbstract:We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify $\alpha$ and $\beta$ particles. Uranium and thorium contamination in the CCD bulk was measured through $\alpha$ spectroscopy, with an upper limit on the $^{238}$U ($^{232}$Th) decay rate of 5 (15) kg$^{-1}$ d$^{-1}$ at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from $^{32}$Si-$^{32}$P or $^{210}$Pb-$^{210}$Bi sequences of $\beta$ decays. The decay rate of $^{32}$Si was found to be $80^{+110}_{-65}$ kg$^{-1}$ d$^{-1}$ (95% CI). An upper limit of $\sim$35 kg$^{-1}$ d$^{-1}$ (95% CL) on the $^{210}$Pb decay rate was obtained independently by $\alpha$ spectroscopy and the $\beta$ decay sequence search. These levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.
Submission history
From: Alvaro Chavarria [view email][v1] Mon, 8 Jun 2015 15:52:58 UTC (3,325 KB)
[v2] Thu, 9 Jul 2015 15:30:40 UTC (3,326 KB)
Current browse context:
astro-ph.IM
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.