High Energy Physics - Phenomenology
[Submitted on 18 Jun 2015]
Title:The ATLAS Z + MET Excess in the MSSM
View PDFAbstract:We demonstrate that the $3\sigma$ excess observed by ATLAS in the Z + MET channel can be explained within the context of the MSSM. Using the freedom inherent in the pMSSM, we perform a detailed analysis of the parameter space and find a scenario that describes the excess while simultaneously complying with all other search constraints from the Run I data at 7 and 8 TeV, including the Z + MET analysis by CMS. We generate a small sample of simplified models, using promising models from our existing pMSSM sample as seeds, and study their properties. The successful region is described by the production of 1st/2nd generation squark pairs, followed by their decay into a bino-like neutralino which in turn decays into a Higgsino-like LSP triplet by emitting a Z boson, i.e., $\tilde q\to\tilde B\to\tilde h$ with $\tilde q = \tilde Q_L,\tilde u_R,$ or $\tilde d_R$. The sweet spot for the sparticle spectrum is found to have squark masses in the 500-750 GeV range, with bino masses near 350 GeV with a mass splitting of 150-200 GeV with the Higgsino LSP. If this excess holds, then this scenario predicts that a signal will be observed in the 0l + jets and/or 1l + jets searches in the early operations of Run II.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.