Physics > Accelerator Physics
[Submitted on 30 Jul 2015 (v1), last revised 3 Aug 2015 (this version, v3)]
Title:Beam size and position measurement based on logarithm processing algorithm in HLS II
View PDFAbstract:A logarithm processing algorithm to measure beam transverse size and position is proposed and preliminary experimental results in Hefei Light Source II (HLS II) are given. The algorithm is based on only 4 successive channels of 16 anode channels of multianode photomultiplier tube (MAPMT) R5900U-00-L16 which has typical rise time of 0.6 ns and effective area of 0.8x16 mm for a single anode channel. In the paper, we firstly elaborate the simulation results of the algorithm with and without channel inconsistency. Then we calibrate the channel inconsistency and verify the algorithm using general current signal processor Libera Photon in low-speed scheme. Finally we get turn-by-turn beam size and position and calculate the vertical tune in high-speed scheme. The experimental results show that measured values fit well with simulation results after channel differences are calibrated and the fractional part of the tune in vertical direction is 0.3628 which is very close to the nominal value 0.3621.
Submission history
From: Chaocai Cheng [view email][v1] Thu, 30 Jul 2015 14:27:39 UTC (6,004 KB)
[v2] Fri, 31 Jul 2015 00:31:57 UTC (6,004 KB)
[v3] Mon, 3 Aug 2015 04:45:35 UTC (6,004 KB)
Current browse context:
physics.acc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.