Nuclear Theory
[Submitted on 11 Dec 2015 (v1), last revised 22 Feb 2016 (this version, v3)]
Title:Nucleon Polarizabilities: from Compton Scattering to Hydrogen Atom
View PDFAbstract:We review the current state of knowledge of the nucleon polarizabilities and of their role in nucleon Compton scattering and in hydrogen spectrum. We discuss the basic concepts, the recent lattice QCD calculations and advances in chiral effective-field theory. On the experimental side, we review the ongoing programs aimed to measure the nucleon (scalar and spin) polarizabilities via the Compton scattering processes, with real and virtual photons. A great part of the review is devoted to the general constraints based on unitarity, causality, discrete and continuous symmetries, which result in model-independent relations involving nucleon polarizabilities. We (re-)derive a variety of such relations and discuss their empirical value. The proton polarizability effects are presently the major sources of uncertainty in the assessment of the muonic hydrogen Lamb shift and hyperfine structure. Recent calculations of these effects are reviewed here in the context of the "proton-radius puzzle". We conclude with summary plots of the recent results and prospects for the near-future work.
Submission history
From: Franziska Hagelstein [view email][v1] Fri, 11 Dec 2015 19:29:31 UTC (5,509 KB)
[v2] Tue, 15 Dec 2015 13:56:14 UTC (5,508 KB)
[v3] Mon, 22 Feb 2016 16:34:27 UTC (5,514 KB)
Current browse context:
nucl-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.