High Energy Physics - Theory
[Submitted on 13 Jan 2016 (v1), last revised 15 Mar 2017 (this version, v3)]
Title:The theory of local mass dimension one fermions of spin one half
View PDFAbstract:About a decade ago the present author in collaboration with Daniel Grumiller presented an `unexpected theoretical discovery' of spin one-half fermions with mass dimension one [JCAP 2005, PRD 2005]. In the decade that followed a significant number of groups explored intriguing mathematical and physical properties of the new construct. However, the formalism suffered from two troubling features, that of non-locality and a subtle violation of Lorentz symmetry. Here, we trace the origin of both of these issues to a hidden freedom in the definition of duals of spinors and the associated field adjoints. In the process, for the first time, we provide a quantum theory of spin one-half fermions that is free from all the mentioned issues. The interactions of the new fermions are restricted to dimension-four quartic self interaction, and also to a dimension-four coupling with the Higgs. A generalised Yukawa coupling of the new fermions with neutrinos provides an hitherto unsuspected source of lepton-number violation. The new fermions thus present a first-principle dark matter partner to Dirac fermions of the standard model of high energy physics with contrasting mass dimensions -- that of three halves for the latter versus one of the former without mutating the statistics from fermionic to bosonic.
Submission history
From: Dharam Vir Ahluwalia [view email][v1] Wed, 13 Jan 2016 10:19:34 UTC (27 KB)
[v2] Fri, 6 May 2016 09:09:07 UTC (31 KB)
[v3] Wed, 15 Mar 2017 12:14:19 UTC (57 KB)
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.