Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 7 Feb 2016]
Title:Analysis of the observed and intrinsic durations of gamma-ray bursts with known redshift
View PDFAbstract:The duration distribution of 408 GRBs with measured both duration $T_{90}$ and redshift $z$ is examined. Mixtures of a number of distributions (standard normal, skew-normal, sinh-arcsinh, and alpha-skew-normal) are fitted to the observed and intrinsic durations using the maximum log-likelihood method. The best fit is chosen via the Akaike information critetion. The aim of this work is to assess the presence of the presumed intermediate GRB class, and to provide a phenomenological model more appropriate than the common mixture of standard Gaussians. While $\log T^{obs}_{90}$ are well described by a truly trimodal fit, after moving to the rest frame the statistically most significant fit is unimodal. To trace the source of this discrepancy, 334 GRBs observed only by $Swift$/BAT are examined in the same way. In the observer frame, this results in a number of statistically plausible descriptions, being uni- and bimodal, and with the number of components ranging from one to three. After moving to the rest frame, no unambiguous conclusions may be put forward. It is concluded that the size of the sample is not big enough to infer reliably GRB properties based on a univariate statistical reasoning only.
Submission history
From: Mariusz Tarnopolski [view email][v1] Sun, 7 Feb 2016 11:55:51 UTC (2,977 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.