Nuclear Theory
[Submitted on 10 Feb 2016]
Title:Toward a consistent evolution of the quark-gluon plasma and heavy quarks
View PDFAbstract:Heavy-quark observables in ultrarelativistic heavy-ion collisions, like the nuclear modification factor and the elliptic flow, give insight into the mechanisms of high-momentum suppression and low-momentum thermalization of heavy quarks. Here, we present a global study of these two observables within a coupled approach of the heavy-quark propagation in a realistic fluid dynamical medium, MC@sHQ+EPOS2, and compare to experimental data from RHIC and LHC experiments. The heavy quarks scatter elastically and inelastically with the quasiparticles of the quark-gluon plasma (QGP), which are represented consistently with the underlying equation of state. We examine two scenarios: first, we interpret the lattice QCD equation of state as a sum of partonic and hadronic contributions, and second, as a gas of massive partonic quasiparticles. It is observed that independent of their momentum the energy loss of heavy quarks depends strongly on how the lattice QCD equation of state is translated into degrees of freedom of the QGP.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.