Nuclear Theory
[Submitted on 22 Feb 2016 (v1), last revised 13 Oct 2016 (this version, v3)]
Title:Constraints on $s-\bar s$ asymmetry of the proton in chiral effective theory
View PDFAbstract:We compute the $s-\bar s$ asymmetry in the proton in chiral effective theory, using phenomenological constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms and contact interactions, which impact the shape of the $s-\bar s$ difference. We identify a valence-like component of $s(x)$ which is balanced by a $\delta$-function contribution to $\bar s(x)$ at $x=0$, so that the integrals of $s$ and $\bar s$ over the experimentally accessible region $x > 0$ are not equal. Using a regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the second moment of the asymmetry to the range $-0.07 \times 10^{-3} \leq \langle x(s-\bar s) \rangle \leq 1.12 \times 10^{-3}$ at a scale of $Q^2=1 $GeV$^2$. This is too small to account for the NuTeV anomaly and of the wrong sign to enhance it.
Submission history
From: Xuangong Wang [view email][v1] Mon, 22 Feb 2016 04:47:53 UTC (271 KB)
[v2] Fri, 18 Mar 2016 01:26:52 UTC (289 KB)
[v3] Thu, 13 Oct 2016 00:52:55 UTC (295 KB)
Current browse context:
nucl-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.