High Energy Physics - Phenomenology
[Submitted on 7 Mar 2016 (v1), last revised 16 Jul 2016 (this version, v2)]
Title:Functional renormalization group analysis of the soft mode at the QCD critical point
View PDFAbstract:We make an intensive investigation of the soft mode at the quantum chromodynamics (QCD) critical point on the basis of the functional renormalization group (FRG) method in the local potential approximation. We calculate the spectral functions $\rho_{\sigma, \pi}(\omega,\, p)$ in the scalar ($\sigma$) and pseudoscalar ($\pi$) channels beyond the random phase approximation in the quark--meson model. At finite baryon chemical potential $\mu$ with a finite quark mass, the baryon-number fluctuation is coupled to the scalar channel and the spectral function in the $\sigma$ channel has a support not only in the time-like ($\omega\,>\,p$) but also in the space-like ($\omega\,<\, p$) regions, which correspond to the mesonic and the particle--hole phonon excitations, respectively. We find that the energy of the peak position of the latter becomes vanishingly small with the height being enhanced as the system approaches the QCD critical point, which is a manifestation of the fact that the phonon mode is the {\em soft mode} associated with the second-order transition at the QCD critical point, as has been suggested by some authors. Moreover, our extensive calculation of the spectral function in the $(\omega, p)$ plane enables us to see that the mesonic and phonon modes have the respective definite dispersion relations $\omega_{\sigma.{\rm ph}}(p)$, and it turns out that $\omega_{\sigma}(p)$ crosses the light-cone line into the space-like region, and then eventually merges into the phonon mode as the system approaches the critical point more closely. This implies that the sigma-mesonic mode also becomes soft at the critical point. We also provide numerical stability conditions that are necessary for obtaining the accurate effective potential from the flow equation.
Submission history
From: Takeru Yokota [view email][v1] Mon, 7 Mar 2016 16:41:14 UTC (2,613 KB)
[v2] Sat, 16 Jul 2016 03:28:44 UTC (2,686 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.